欧美成一级-欧美成在人线a免费-欧美传媒影-欧美大逼逼-欧美大成色www永久网站婷-欧美大胆a级视频

新聞動態
企業新聞
媒體報道
發表文獻

Published PAPER發表文獻

  • 2016

    Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption[J]. Nature Medicine, 2016, 22(5): 539-546.

    Tumor necrosis factor (TNF) superfamily member 11 (TNFSF11, also known as RANKL) regulates multiple physiological or pathological functions, including osteoclast differentiation and osteoporosis. TNFRSF11A (also called RANK) is considered to be the sole receptor for RANKL. Herein we report that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL. LGR4 competes with RANK to bind RANKL and suppresses canonical RANK signaling during osteoclast differentiation. RANKL binding to LGR4 activates the Gαq and GSK3-β signaling pathway, an action that suppresses the expression and activity of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATC1) during osteoclastogenesis. Both whole-body (Lgr4-/-) and monocyte conditional knockout mice of Lgr4 (Lgr4 CKO) exhibit osteoclast hyperactivation (including elevation of osteoclast number, surface area, and size) and increased bone erosion. The soluble LGR4 extracellular domain (ECD) binds RANKL and inhibits osteoclast differentiation in vivo. Moreover, LGR4-ECD therapeutically abrogated RANKL-induced bone loss in three mouse models of osteoporosis. Therefore, LGR4 acts as a second RANKL receptor that negatively regulates osteoclast differentiation and bone resorption.
  • 2016

    He Y, Peng S, Wang J, et al. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer[J]. Nature Communications, 2016, 7(1).

    Androgen receptor (AR) antagonist MDV3100 is the first therapeutic approach in treating castration-resistant prostate cancer (CRPC), but tumours frequently become drug resistant via multiple mechanisms including AR amplification and mutation. Here we identify the small molecule Ailanthone (AIL) as a potent inhibitor of both full-length AR (AR-FL) and constitutively active truncated AR splice variants (AR-Vs). AIL binds to the co-chaperone protein p23 and prevents AR's interaction with HSP90, thus resulting in the disruption of the AR-chaperone complex followed by ubiquitin/proteasome-mediated degradation of AR as well as other p23 clients including AKT and Cdk4, and downregulates AR and its target genes in PCa cell lines and orthotopic animal tumours. In addition, AIL blocks tumour growth and metastasis of CRPC. Finally, AIL possesses favourable drug-like properties such as good bioavailability, high solubility, lack of CYP inhibition and low hepatotoxicity. In general, AIL is a potential candidate for the treatment of CRPC.
  • 2016

    Guan Y, Ma Y, Li Q, et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Molecular Medicine (2016).

    The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
  • 2016

    Wang J, Hu K, Guo J, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK[J]. Nature Communications, 2016, 7(1): 11363-11363.

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers.
請輸入您想查 |
返回頂部
主站蜘蛛池模板: 2025国产精品福利在线观看 | 日本高清www色视频网站 | 亚洲人午夜射 | 欧美一区亚洲二区 | 免费一级片在线观看 | 精品国产91av自在自线麻豆 | 亚洲av无码一区二区三区人 | 国产综合成人久久大片91 | 欧美日韩偷拍一区二区 | 91最懂男人的午夜社区 | 日本激情视频a∨一区 | 欧美日韩变态另类校园 | 国产在线 | 日本三级午 | 欧美在线国产精品 | 国产久re热视频精品播放 | 精品日韩av一区二 | 欧美一区二区东京 | 97色婷婷| 久久丁香婷深爱五月天网 | 国产在线精品一区二区 | 色综合无码黑 | 国产精品亚洲а∨无码播放麻豆 | 色色视频免费网 | 亚洲欧美精品综合中文字幕 | 精品精品久久宅男的天堂 | 亚洲一区二区三区乱 | 波多野结衣一区二区无码 | 亚洲v国产v天堂a无码久久 | 日本乱理伦片 | 欧美日韩亚洲国产一 | 一级毛片视频高清的片資源免 | 日本免费 | 亚洲精品在线观看播播 | 最新热播短剧 | 亚洲大片精品永久免费看网站 | 无码一区二区人妻精品做受 | 亚洲男同电影 | 久久精品国产清高在天天线 | 国产一级a大黄片毛片视频 国产一级a精品免费高清欧美 | 国产系列丝袜熟女精品网站 |